Highest vectors of representations (total 3) ; the vectors are over the primal subalgebra. | \(g_{14}\) | \(g_{4}\) | \(g_{10}\) |
weight | \(\omega_{1}+\omega_{3}\) | \(2\omega_{4}\) | \(\omega_{2}+2\omega_{4}\) |
Isotypical components + highest weight | \(\displaystyle V_{\omega_{1}+\omega_{3}} \) → (1, 0, 1, 0) | \(\displaystyle V_{2\omega_{4}} \) → (0, 0, 0, 2) | \(\displaystyle V_{\omega_{2}+2\omega_{4}} \) → (0, 1, 0, 2) | |||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | |||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
| |||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | \(2\omega_{4}\) \(0\) \(-2\omega_{4}\) | \(\omega_{2}+2\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}+2\omega_{4}\) \(\omega_{2}\) \(-\omega_{1}+\omega_{3}+2\omega_{4}\) \(\omega_{1}-\omega_{3}+2\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}+2\omega_{4}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}-2\omega_{4}\) \(-\omega_{2}+2\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{1}+\omega_{3}-2\omega_{4}\) \(\omega_{1}-\omega_{3}-2\omega_{4}\) \(-\omega_{2}\) \(-\omega_{1}+\omega_{2}-\omega_{3}-2\omega_{4}\) \(-\omega_{2}-2\omega_{4}\) | |||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | \(2\omega_{4}\) \(0\) \(-2\omega_{4}\) | \(\omega_{2}+2\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}+2\omega_{4}\) \(\omega_{2}\) \(-\omega_{1}+\omega_{3}+2\omega_{4}\) \(\omega_{1}-\omega_{3}+2\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}+2\omega_{4}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}-2\omega_{4}\) \(-\omega_{2}+2\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{1}+\omega_{3}-2\omega_{4}\) \(\omega_{1}-\omega_{3}-2\omega_{4}\) \(-\omega_{2}\) \(-\omega_{1}+\omega_{2}-\omega_{3}-2\omega_{4}\) \(-\omega_{2}-2\omega_{4}\) | |||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus 3M_{0}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}}\oplus M_{\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{3}}\) | \(\displaystyle M_{2\omega_{4}}\oplus M_{0}\oplus M_{-2\omega_{4}}\) | \(\displaystyle M_{\omega_{1}-\omega_{2}+\omega_{3}+2\omega_{4}}\oplus M_{\omega_{2}+2\omega_{4}}\oplus M_{-\omega_{1}+\omega_{3}+2\omega_{4}} \oplus M_{\omega_{1}-\omega_{3}+2\omega_{4}}\oplus M_{-\omega_{2}+2\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+2\omega_{4}} \oplus M_{\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}}\oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}} \oplus M_{-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-2\omega_{4}}\oplus M_{\omega_{2}-2\omega_{4}} \oplus M_{-\omega_{1}+\omega_{3}-2\omega_{4}}\oplus M_{\omega_{1}-\omega_{3}-2\omega_{4}}\oplus M_{-\omega_{2}-2\omega_{4}} \oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}-2\omega_{4}}\) | |||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus 3M_{0}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}}\oplus M_{\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{3}}\) | \(\displaystyle M_{2\omega_{4}}\oplus M_{0}\oplus M_{-2\omega_{4}}\) | \(\displaystyle M_{\omega_{1}-\omega_{2}+\omega_{3}+2\omega_{4}}\oplus M_{\omega_{2}+2\omega_{4}}\oplus M_{-\omega_{1}+\omega_{3}+2\omega_{4}} \oplus M_{\omega_{1}-\omega_{3}+2\omega_{4}}\oplus M_{-\omega_{2}+2\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+2\omega_{4}} \oplus M_{\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}}\oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}} \oplus M_{-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-2\omega_{4}}\oplus M_{\omega_{2}-2\omega_{4}} \oplus M_{-\omega_{1}+\omega_{3}-2\omega_{4}}\oplus M_{\omega_{1}-\omega_{3}-2\omega_{4}}\oplus M_{-\omega_{2}-2\omega_{4}} \oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}-2\omega_{4}}\) |